Hi,
I am setting up a system consisting of elasticsearch-logstash-kibana for
log analysis. I am using one machine (2 GB RAM, 2 CPUs) running logstash,
kibana and two instances of elasticsearch. Two other machines, each
running logstash-forwarder are pumping logs into the ELK system.
The reasoning behind using two ES instances was this - I needed one
uninterrupted instance to index the incoming logs and I also needed to
query the currently existing indices. However, I didn't want any complex
querying to result in loss of events owing to Out of Memory Errors because
of excessive querying.
So, one elasticsearch node was master = true and data = true which did the
indexing (called the writer node) and the other node, was master = false
and data = false (this was the workhorse or reader node) .
I assumed that, in cases of excessive querying, although the data is stored
on the writer node, the reader node will query the data and all the
processing will take place on the reader as a result of which issues like
out of memory error etc will be avoided and uninterrupted indexing will
take place.
However, while testing this, I realized that the reader hardly uses the
heap memory ( Checked this in Marvel ) and when I fire a complex search
query - which was a search request using the python API where the 'size'
parameter was set to 10000, the writer node throws an out of memory error,
indicating that the processing also takes place on the writer node only. My
min and max heap size was set to 256m for this test. I also ensured that I
was firing the search query to the port on which the reader node was
listening (Port 9200). The writer node was running on Port 9201.
Was my previous understanding of the problem incorrect - i.e. having one
reader and one writer node, doesn't help in uninterrupted indexing of
documents? If this is so, what is the use of having a separate workhorse or
reader node?
My eventual aim is to be able to query elasticsearch and fetch large
amounts of data at a time without interrupting/slowing down the indexing of
documents.
Thank you.
Rujuta
--
You received this message because you are subscribed to the Google Groups "elasticsearch" group.
To unsubscribe from this group and stop receiving emails from it, send an email to elasticsearch+unsubscribe@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/elasticsearch/a8fcd5f0-447a-4654-9115-9bc4e524b246%40googlegroups.com.
For more options, visit https://groups.google.com/d/optout.