Elasticsearch v7.5
Hello and good day!
We have 2 indices named socialmedia and influencers
Sample contents:
socialmedia :
{
'_id' : 1001,
'title' : "Title 1",
'smp_id' : 1,
"latest" : [
{
"soc_mm_score" : "5",
}
]
},
{
'_id' : 1002,
'title' : "Title 2",
'smp_id' : 2,
"latest" : [
{
"soc_mm_score" : "10",
}
]
},
{
'_id' : 1003,
'title' : "Title 3",
'smp_id' : 3,
"latest" : [
{
"soc_mm_score" : "35",
}
]
},
{
'_id' : 1004,
'title' : "Title 4",
'smp_id' : 2,
"latest" : [
{
"soc_mm_score" : "30",
}
]
}
//omitted some other fields
influencers :
{
'_id' : 1,
'name' : "John",
'smp_id' : 1
},
{
'_id' : 2,
'name' : "Peter",
'smp_id' : 2
},
{
'_id' : 3,
'name' : "Mark",
'smp_id' : 3
}
Now I have this simple query that determines which documents in the socialmedia index has the most latest.soc_mm_score value, and also displaying their corresponding influencers determined by the smp_id
GET socialmedia/_search
{
"size": 0,
"_source": "latest",
"query": {
"match_all": {}
},
"aggs": {
"LATEST": {
"nested": {
"path": "latest"
},
"aggs": {
"MM_SCORE": {
"terms": {
"field": "latest.soc_mm_score",
"order": {
"_key": "desc"
},
"size": 3
},
"aggs": {
"REVERSE": {
"reverse_nested": {},
"aggs": {
"SMP_ID": {
"top_hits": {
"_source": ["smp_id"],
"size": 1
}
}
}
}
}
}
}
}
}
}
SAMPLE OUTPUT :
"aggregations" : {
"LATEST" : {
"doc_count" : //omitted,
"MM_SCORE" : {
"doc_count_error_upper_bound" : //omitted,
"sum_other_doc_count" : //omitted,
"buckets" : [
{
"key" : 35,
"doc_count" : 1,
"REVERSE" : {
"doc_count" : 1,
"SMP_ID" : {
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "socialmedia",
"_type" : "index",
"_id" : "1003",
"_score" : 1.0,
"_source" : {
"smp_id" : "3"
}
}
]
}
}
}
},
{
"key" : 30,
"doc_count" : 1,
"REVERSE" : {
"doc_count" : 1,
"SMP_ID" : {
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "socialmedia",
"_type" : "index",
"_id" : "1004",
"_score" : 1.0,
"_source" : {
"smp_id" : "2"
}
}
]
}
}
}
},
{
"key" : 10,
"doc_count" : 1,
"REVERSE" : {
"doc_count" : 1,
"SMP_ID" : {
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "socialmedia",
"_type" : "index",
"_id" : "1002",
"_score" : 1.0,
"_source" : {
"smp_id" : "2"
}
}
]
}
}
}
}
]
}
}
}
with the query above, I was able to successfully display which documents have the highest latest.soc_mm_score values
The sample output above only displays DOCUMENTS , telling that the influencers (a.k.a smp_id) related to them are the TOP INFLUENCERS according to latest.soc_mm_score
Ideally just by using this aggs query,
"terms" : {
"field" : "smp_id"
}
portrays the concept of which influencers are the top according to the doc_count
Now, displaying the terms query according to latest.soc_mm_score displays TOP DOCUMENTS
"terms" : {
"field" : "latest.soc_mm_score"
}
REAL OBJECTIVE :
I want to display the TOP INFLUENCERS according to the latest.soc_mm_count in the socialmedia index. If Elasticsearch can count all the documents where according to unique smp_id, is there a way for ES to sum all latest.soc_mm_score values and use it as terms ?
My objective above should output these:
- smp_id 2 as the Top Influencer because he has 2 posts (with soc_mm_score of 30 and 10), adding them gets him 40 soc_mm_score
- smp_id 3 as the 2nd Top Influencer, he has 1 post with 35 soc_mm_score
- smp_id 1 as the 3rd Top Influencer, he has 1 post with 5 soc_mm_score
Is there a proper query to meet this objective?