Hello Team,
Any suggestion of doing spell check before creating embeddings? e.g. if the query is misspelt "toiket rolls" instead of "toilet rolls" can we create the embeddings for "toilet rolls" using ELSER2 model
POST _ml/trained_models/elser-model-2-for-ingest-search/_infer
{
"docs":{
"text_field": "toiket rolls"
}
}
Result:
{
"inference_results": [
{
"predicted_value": {
"##ike": 2.758485,
"##t": 2.2162936,
"roll": 2.0772736,
"to": 1.8866745,
"rolls": 1.8158195,
"rolling": 1.4678012,
"##uge": 0.92356,
"bring": 0.9175947,
"sue": 0.7835926,
"##k": 0.63172615,
"technique": 0.61145663,
"festival": 0.5835248,
"##te": 0.5779746,
"dutch": 0.5647326,
"wheel": 0.5633026,
"##nt": 0.5176124,
"roller": 0.5174776,
"japanese": 0.50211316,
"flute": 0.49578997,
"movement": 0.4836977,
"german": 0.4779577,
"rake": 0.46293172,
"cake": 0.44880012,
"horse": 0.42376143,
"hand": 0.39447936,
"dance": 0.3883844,
"stunt": 0.3841404,
"craft": 0.35372037,
"stock": 0.31527817,
"puppet": 0.29949415,
"##ts": 0.28825995,
"film": 0.27967602,
"hang": 0.27863201,
"beer": 0.25969,
"paper": 0.25739628,
"rice": 0.2504973,
"rope": 0.20884833,
"ski": 0.17991425,
"dodge": 0.17231494,
"ko": 0.16818042,
"art": 0.15494661,
"whip": 0.15116276,
"foot": 0.14420456,
"band": 0.14200562,
"windmill": 0.13235468,
"welcome": 0.12275867,
"weaving": 0.10461076,
"production": 0.07868658,
"truck": 0.06703148,
"vehicle": 0.05202646,
"ride": 0.030120868,
"build": 0.023026925,
"french": 0.021837963,
"fake": 0.019907437,
"brake": 0.012350509,
"wright": 0.0088391695,
"piece": 0.006032948,
"style": 0.0019135037
}
}
]
}