Hello, you can find the whole config below
  "trigger": {
    "schedule": {
      "interval": "93s"
    }
  },
  "input": {
    "search": {
      "request": {
        "search_type": "query_then_fetch",
        "indices": [
          ".ml-anomalies-*"
        ],
        "types": [],
        "body": {
          "size": 0,
          "query": {
            "bool": {
              "filter": [
                {
                  "term": {
                    "job_id": "my-job-id"
                  }
                },
                {
                  "range": {
                    "timestamp": {
                      "gte": "now-30m"
                    }
                  }
                },
                {
                  "terms": {
                    "result_type": [
                      "bucket",
                      "record",
                      "influencer"
                    ]
                  }
                }
              ]
            }
          },
          "aggs": {
            "bucket_results": {
              "filter": {
                "range": {
                  "anomaly_score": {
                    "gte": 10
                  }
                }
              },
              "aggs": {
                "top_bucket_hits": {
                  "top_hits": {
                    "sort": [
                      {
                        "anomaly_score": {
                          "order": "desc"
                        }
                      }
                    ],
                    "_source": {
                      "includes": [
                        "job_id",
                        "result_type",
                        "timestamp",
                        "anomaly_score",
                        "is_interim"
                      ]
                    },
                    "size": 1,
                    "script_fields": {
                      "start": {
                        "script": {
                          "lang": "painless",
                          "source": "LocalDateTime.ofEpochSecond((doc[\"timestamp\"].date.getMillis()-((doc[\"bucket_span\"].value * 1000)\n * params.padding)) / 1000, 0, ZoneOffset.UTC).toString()+\":00.000Z\"",
                          "params": {
                            "padding": 10
                          }
                        }
                      },
                      "end": {
                        "script": {
                          "lang": "painless",
                          "source": "LocalDateTime.ofEpochSecond((doc[\"timestamp\"].date.getMillis()+((doc[\"bucket_span\"].value * 1000)\n * params.padding)) / 1000, 0, ZoneOffset.UTC).toString()+\":00.000Z\"",
                          "params": {
                            "padding": 10
                          }
                        }
                      },
                      "timestamp_epoch": {
                        "script": {
                          "lang": "painless",
                          "source": "doc[\"timestamp\"].date.getMillis()/1000"
                        }
                      },
                      "timestamp_iso8601": {
                        "script": {
                          "lang": "painless",
                          "source": "doc[\"timestamp\"].date"
                        }
                      },
                      "score": {
                        "script": {
                          "lang": "painless",
                          "source": "Math.round(doc[\"anomaly_score\"].value)"
                        }
                      }
                    }
                  }
                }
              }
            },
            "influencer_results": {
              "filter": {
                "range": {
                  "influencer_score": {
                    "gte": 3
                  }
                }
              },
              "aggs": {
                "top_influencer_hits": {
                  "top_hits": {
                    "sort": [
                      {
                        "influencer_score": {
                          "order": "desc"
                        }
                      }
                    ],
                    "_source": {
                      "includes": [
                        "result_type",
                        "timestamp",
                        "influencer_field_name",
                        "influencer_field_value",
                        "influencer_score",
                        "isInterim"
                      ]
                    },
                    "size": 3,
                    "script_fields": {
                      "score": {
                        "script": {
                          "lang": "painless",
                          "source": "Math.round(doc[\"influencer_score\"].value)"
                        }
                      }
                    }
                  }
                }
              }
            },
            "record_results": {
              "filter": {
                "range": {
                  "record_score": {
                    "gte": 3
                  }
                }
              },
              "aggs": {
                "top_record_hits": {
                  "top_hits": {
                    "sort": [
                      {
                        "record_score": {
                          "order": "desc"
                        }
                      }
                    ],
                    "_source": {
                      "includes": [
                        "result_type",
                        "timestamp",
                        "record_score",
                        "is_interim",
                        "function",
                        "field_name",
                        "by_field_value",
                        "over_field_value",
                        "partition_field_value"
                      ]
                    },
                    "size": 3,
                    "script_fields": {
                      "score": {
                        "script": {
                          "lang": "painless",
                          "source": "Math.round(doc[\"record_score\"].value)"
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  },
  "condition": {
    "compare": {
      "ctx.load.aggregations.bucket_results.doc_count": {
        "gt": 1
      }
    }
  },
  "actions": {
    "log": {
      "logging": {
        "level": "info",
        "text": "some info"
      }
    },
    "send_email": {
      "throttle_period_in_millis": 900000,
      "email": {
        "profile": "standard",
        "to": [
          "mail1@mail.mail"    
        ],
        "subject": "Alert",
        "body": {
          "html": "<html>\n  <body>\n  some text </body>\n</html>\n"
        }
      }
    }
  }
}